The current study increases our understanding of the factors affecting on processes leading to gelation and may provide new materials for innovative applications in biomedicine. This kind of materials could, for example, serve as substitutes to restore, maintain, and/or improve the function of bone tissue. Moreover, they might act as scaffolds to mimic the extracellular matrix and provide support for cell adhesion, migration, and proliferation.
The study was published in the prestigious international Journal of Materials Chemistry B: Materials for biology and medicine, and the article was featured in the cover art of issue 45 (2013).
Supramolecular gels are responsive and reversible
Physical, also known as supramolecular, gels form when low molecular mass compounds interact with one another by forming a network, which finally adsorbs the solvent into its structure. Supramolecular gels differ from the traditional chemical (polymeric) gels as being reversible. They can be subjected to a stimulus, e.g. heating, to which they respond by changing forms. After the exposure ceases, the gel is re-formed.
Supramolecular gels have several applications in materials chemistry and optoelectronics. Furthermore, biomaterials based on supramolecular gels may find use in biomedicine, drug delivery, and regenerative medicine.