Mitochondria produce energy for the cell and require oxygen to do so. As such, they are the most oxygen-demanding component of the cell. But how mitochondria adapt in a low-oxygen environment and are linked to cancer therapy resistance has remained unknown.
“We’ve shown for the first time how the formation of new mitochondria is regulated in cells that lack oxygen and how this process is altered in cancer cells with VHL mutations,” says Associate Professor Susanne Schlisio, group leader at the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet.
Healthy cells are prevented from becoming cancerous by a gene called von Hippel-Lindau (VHL). The 2019 Nobel Prize in Physiology or Medicine was awarded to the discovery that VHL was part of the cell’s oxygen detection system. Normally, VHL breaks down another protein called HIF. Consequently, when VHL is mutated, HIF accumulates and causes a disease called VHL syndrome in which the cells react as if they lack oxygen despite oxygen being present. VHL syndrome greatly increases the risk of tumours, both benign and malignant. VHL syndrome-induced kidney cancer has a poor prognosis, with a five-year survival rate of barely 12 per cent.
In the present study, the researchers examined the protein content of cancer cells from patients with different variants of VHL syndrome, and how they differed from another group of individuals with a special VHL mutation called Chuvash, a mutation involved in hypoxia-sensing disorders without any tumor development. Those with the Chuvash VHL-mutation had normal mitochondria in their cells, while those with VHL syndrome mutation had few.
To increase the amount of mitochondrial content in VHL related kidney cancer cells, the researchers treated these tumours with an inhibitor of a mitochondrial protease called “LONP1”. The cells then became susceptible to the cancer drug sorafenib, which they had previously resisted. In mouse studies, this combination treatment led to reduced tumour growth.
“We hope that this new knowledge will pave the way for more specific LONP1 protease inhibitors to treat VHL-related clear cell kidney cancer,” says the study’s first author Shuijie Li, postdoctoral researcher in the Schlisio’s group. “Our finding can be linked to all VHL syndromic cancers, such as the neuroendocrine tumours pheochromocytoma and paraganglioma, and not just kidney cancer.”
The study was supported by grants from the Swedish Childhood Cancer Foundation, the Swedish Cancer Society, the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the European Research Council (Synergy Grant for the “Kill or Differentiate” project) and the Paradifference Foundation.
Shuijie Li, Wenyu Li, Juan Yuan, Petra Bullova, Jieyu Wu, Xuepei Zhang, Yong Liu, Monika Plescher, Javier Rodriguez, Oscar C. Bedoya-Reina, Paulo R. Jannig, Paula Valente-Silva, Meng Yu, Marie Arsenian Henriksson, Roman A. Zubarev, Anna Smed-Sörensen, Carolyn K. Suzuki, Jorge L. Ruas, Johan Holmberg, Catharina Larsson, C. Christofer Juhlin, Alex von Kriegsheim and Yihai Cao, Susanne Schlisio.
Impaired oxygen-sensitive regulation of mitochondrial biogenesis within the von Hippel-Lindau syndrome.
Nature Metabolism, online 27 June 2022, doi: 10.1038/s42255-022-00593-x